
Finding Strongly Connected Components in Distributed Graphs

William McLendon III Bruce Hendrickson Steven J. Plimpton
Sandia National Laboratories

{wcmclen, bahendr, sjplimp}@sandia.gov

Lawrence Rauchwerger
Dept. of Computer Science, Texas A&M University

rwerger@cs.tamu.edu

Abstract

The traditional, serial, algorithm for finding the strongly connected components in a graph is based
on depth first search and has complexity which is linear in the size of the graph. Depth first search
is difficult to parallelize, which creates a need for a different parallel algorithm for this problem. We
describe the implementation of a recently proposed parallel algorithm that finds strongly connected
components in distributed graphs, and discuss how it is used in a radiation transport solver.

1 Introduction

A strongly connected component (SCC) of a directed graph is a maximal subset of vertices in which
there is a directed path from any vertex to any other. A cycle in a directed graph is a path that is
simple except the first and final vertices are the same. Although the number of cycles in a graph
can be exponential in the number of vertices, the number of SCCs is at most linear in the number
of vertices, since no vertex can be in more than one SCC. For our purposes we will only consider a
subset of vertices to be an SCC if it has more than one vertex.

Tarjan’s classic serial algorithm for detection of SCCs runs linearly with respect to the number
of edges and uses depth-first search [1]. However, depth-first search is known to be difficult to
parallelize – the special case of lexicographical depth first search is P-Complete [2, 3], which in
practical terms means it is unlikely that a scalable parallel algorithm exists.

There are some parallel algorithms for detecting SCCs that do not rely on depth first search.
Gazit and Miller have an NC algorithm which can be used for locating SCCs that uses matrix
multiplication [4]. Vishkin and Cole [5] and Amato [6] have proposed optimizations or extensions
of this algorithm, but they still require O(n2.376) processors and O(log2 n) time where n is the
number of vertices in the graph. A more complicated NC algorithm developed by Kao for planar
graphs requires O(log3 n) time and n/ log n processors [7]. Another parallel algorithm for planar
graphs is due to Bader [8], but our applications are non-planar, arising from graphs associated with
finite element mesh representations of 3-D domains.

In this paper we describe our modification of a recently proposed algorithm due to Fleischer, et
al. [9] and our parallel implementation of it in MPI. The Fleischer, et al. algorithm, called DCSC
for divide–and–conquer strong components is a recursive, divide–and–conquer approach that does
not rely on depth first search. As shown in [9], its expected serial runtime is O(m log n), where m is
the number of edges and n is the number of vertices in the graph. We describe the DCSC algorithm

1

1

2
3

4

5

6
7

8

9

10

11

12

13

14
15

16

(b)(a)
16

15
14

13
12

11

10

9

8

7
61

2

3

4

5

(a) (b)

Figure 1: (a) An unstructured finite-element mesh (left) and its associated acyclic dependence graph for
the angle shown (right). (b) A twisted ring of mesh elements that induces a cycle for the shown angle (left),
and its dependence graph for the angle shown (right). A sweeping method will deadlock when it encounters
a cycle such as this.

and our modifications to it in §2. We then present details of our parallel implementation in §3.
In §4 we quantify the performance of our approach by presenting experimental results obtained on
two different machines: CPlant, a 1700 processor DEC Alpha commodity cluster and ASCI Red, a
9280 processor Intel supercomputer. Both machines are located at Sandia National Laboratories.

The motivation for this work is a computational code for solving radiation transport on 3D
unstructured finite element grids. The model of radiation transport solver we have selected for this
work solves the transport equations using a sweep method. Sweeping methods used in radiation
transport discretize the radiation field by angle, and flux propagation is computed for a set of
discrete directions or ordinates. The computation for each angle is performed by sweeping the flux
across a grid, i.e., a finite element mesh. Radiation enters a mesh cell via faces whose outward
normals point upwind, and exits through downwind faces. This implies an order of computation on
the grid cells which, for a single ordinate direction, is represented as a directed dependence graph
(DDG). Two example meshes and their associated dependence graphs for a particular angle are
shown in Fig. 1.

Each of the (typically several hundred) ordinate directions induces an associated dependence
graph. Sweeping methods will deadlock if any of the dependence graphs contains a cycle, such
as the one in the dependence graph for the twisted grid shown in Fig. 1(b). Such situations are
not uncommon in 3-D unstructured grids and in Lagrangian simulations where the underlying
discretized object (the mesh) deforms over time. To avoid deadlock, cycles in the set of ordinate
dependence graphs must be detected and broken before the sweep can be performed. Since the
mesh elements (vertices of the dependence graph) are distributed across processors, a key step in
parallelizing transport sweeps is a scalable parallel algorithm for cycle detection.

2 The Modified DCSC Algorithm

The main idea of the DCSC algorithm for strongly connected components is to recursively partition
the directed graph G = (V,E) in such a way that any SCCs will be entirely contained within a
single partition. Each recursive step in DCSC begins with the selection of a random pivot vertex v.
Next, the algorithm finds Pred(G, v), the set of predecessors of v, which are all the vertices which
can reach v by a directed path of edges. Similarly, it finds Desc(G, v), the set of descendants of
v, the vertices that can be reached from v by a directed path of edges. All vertices which are not
predecessors or descendants are in the remainder set, Rem(G, v). The partitioning is based on the

2

following Lemma [9].

Lemma 1 The unique SCC containing v in G is Pred(G, v) ∩ Desc(G, v). Moreover, any other
SCC of G is a subset of Pred(G, v), a subset of Desc(G, v), or a subset of Rem(G, v).

With this lemma, the graph is broken into three disjoint pieces, and the algorithm is applied
recursively to each piece. The recursion stops when partitions contain zero or one vertex. The
expected serial complexity of DCSC is shown in [9] to be O(m log n).

The DCSC algorithm is amenable to parallelism in two ways. First, each recursion generates a
set of up to three independent problems which can be analyzed independently. Second, the principle
computational step is the search for ancestors and descendants which is like a topological traversal
of the graphs. This type of traversal has much more parallelism [10] than depth-first search used
in Tarjan’s algorithm. But this parallelism comes at the cost of an extra factor of log n in the
run time. In addition, in the radiation transport applications which motivated our work, multiple
directed graphs on the same nodal set need to be analyzed for cycles simultaneously. This provides
yet more scope for parallelism as will be discussed further in §3.1

The radiation transport applications of interest to us generally have few SCCs. By efficiently
eliminating portions of the graph without SCCs, we can reduce the size of a problem before invoking
DCSC and so improve overall performance. Our algorithm to do this, which we call ModifiedDCSC,
is outlined in Fig. 2. Steps (6)–(11) comprise the DCSC algorithm, but in our approach we perform
a trim step at the beginning of each iteration which tries to reduce the size of the graph that must
be processed by eliminating vertices which cannot be part of an SCC. The forward and backward
trim steps involve topological traversals of the graph. The forward trim begins with all vertices with
no ancestors and removes them and all their edges. After their removal, some other vertices may
now have no ancestors and they are removed. The process continues until no more vertices can be
removed. Vertices that are part of an SCC will not be eliminated during a trim due to the nature of
the topological traversal. The reverse trim performs the same operation from the other end of the
graph. All vertices with no descendants are removed recursively. These two trim operations can be
performed in O(m) serial time. If the graph has no SCCs then all the vertices will be removed in
the forward trim. It is worth noting that the trim operation exactly mimics the steps in a transport
sweep. But in our case instead of simulating radiation, we merely note whether or not a given cell
can receive all the data it needs to do its computation.

We say that vertices that are reachable from a SCC are contained in the shadow of the SCC.
The forward trim of G removes all vertices from V that are not contained in SCCs or in the
forward shadow of some SCC. The reverse trim also produces a shadow in the reverse direction.
The intersection of these two shadows, which we call the dark shadow is then partitioned via a
single level of the DCSC algorithm.

Fig. 4(a) illustrates how the forward and reverse trim steps remove nodes which are neither a
part of nor are dependent on a SCC. A more abstract view is shown in Fig. 3(a). If the reverse trim
encounters another SCC within the shadow of the forward trim, a second shadow will be cast by
this SCC into the previous shadow. The resulting dark shadow contains the vertices of G that must
be further processed. The effectiveness of trimming the DDG is dependent on how close the SCCs
are to the starting points of the forward and reverse topological traversals (vertices with in-degree
or out-degree zero, respectively). If we encounter a SCC early in the traversal, the shadow will be
large, thus reducing the effectiveness of the trim.

The partitioning of the dark shadow into disjoint regions is illustrated in Fig. 3(b). An example
of this partitioning on an actual dependence graph is shown in Fig. 4(b), where the graph is

3

Algorithm: ModifiedDCSC(G)

1. IF G has no more than 1 vertex THEN return

2. TRIM G in forward direction

3. IF G is not empty THEN

4. TRIM G in backward direction

5. Select pivot v from the dark shadow of G
6. MARK Pred(G, v) and Desc(G, v) in G
7. SCC(G, v) = Pred(G, v) ∩ Desc(G, v)
8. DO in parallel:

9. ModifiedDCSC(Pred(G, v) \ SCC(G, v))

10. ModifiedDCSC(Desc(G, v) \ SCC(G, v))

11. ModifiedDCSC(Rem(G, v))

12.ENDIF

Figure 2: ModifiedDCSC Algorithm.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

(b)(a)

cycles

dark shadow

pivot

predecessors

successors

Figure 3: (a) An abstract 2D mesh contain-
ing two SCCs (the circular rings). The TRIM
steps remove the white regions, leaving the dark
shadow (shaded). (b) The dark shadow is par-
titioned around the pivot into Pred, Desc, and
Rem sets by the MARK step.

Forward Trim

Backward Trim
(b)(a)

Successors

Remainder

Predecessors

���
���
	�	
	�	

�

�

���
���

���
���
�
�

���
���
���
���

���
���
���
���

���
���
���
���

Remainder

Trimmed

(c)

Predecessors

Successors

(d)

Figure 4: Example graph being trimmed in (a) by forward and backward trims. Part (b) shows the
predecessor, descendant, and remainder markings of the resulting dark shadow for the selected pivot (the
solid vertex). Parts (c) and (d) show the subgraphs as they are reduced to strongly connected components.

partitioned into three subgraphs that do not share any SCCs. Fig. 4(c, d) show two more iterations
of ModifiedDCSC where the graphs are reduced to SCCs.

The dark shadow is then partitioned by a marking step. The marking algorithm proceeds as
topological traversals of G, originating from a single vertex in G we call the pivot, v. There are two
traversals, one which follows forward edges from v marking all vertices that are reachable from v,
and one that follows edges backwards to mark all vertices from which v is reachable. The topological
nature of this traversal allows for parallelism in the same manner as in trimming.

After marking is complete, the nodes that are both predecessors and descendants comprise
the SCC containing v. The pivot v, and any SCC containing it, are extracted from the graph,
partitioning it into three disjoint subgraphs containing Pred(G, v), Desc(G, v), and Rem(G, v).
The key observation of [9] is that any SCCs remaining in the graph will be wholly contained within
one of these regions. Thus we can call ModifiedDCSC recursively on each of the 3 new graphs. The
recursion stops when all subgraphs contain one or fewer vertices.

4

3 Implementation

In serial, the ModifiedDCSC algorithm outlined in Fig. 2 is straightforward to implement. The
principle computational steps are the trim operations (a topological traversal of the graph) and the
mark operations (determination of ancestors and descendants). Each of these graph operations can
be performed efficiently using a task queue. For the forward trim, begin by placing all the vertices
with no ancestors in a queue of tasks. Now remove a vertex from the queue, delete it from the
graph and decrement the ancestor count of all the vertices it points to. If any of these vertices now
have no ancestors, add them to the queue. When the queue is empty, the trim step is finished. The
backward trim is closely analogous but with descendants and ancestors flipped.

A similar approach works for the descendant (and ancestor) determinations in the mark phase.
Initially, the pivot vertex is marked and placed in a task queue. Now vertices are removed from
the task queue one at a time, and all of their unmarked children (or parents) are added to the task
queue. The process continues until the task queue becomes empty. In this way, all the trim and
mark operations in a single level of recursion can be performed in O(m) time.

We have implemented a parallel version of the ModifiedDCSC algorithm in C with MPI. Our
code takes as input a distributed finite element grid and a list of ordinates directions (angles).
From this, we generate an independent directed dependence graph (DDG) for each ordinate. This
is done by letting each vertex correspond to a finite element, and each edge correspond to a face
shared between two adjacent finite elements. The edge is directed according to the direction in
which the ordinate angle passes through the face. This manner of construction results in a set
of DDGs that have the same set of vertices as well. A particular vertex or edge is owned by the
same processor in all graphs–the distribution of all graphs comes from the distribution of the mesh
across processors. The edges are directed differently for each DDG resulting in different graphs
and consequently different SCCs. Each DDG is fully distributed across all the processors. Since
all graphs are fully distributed, we gain additional parallelism by finding the SCCs in each DDG
simultaneously.

Vertices on processor boundaries have access to ghost nodes, which store information about the
vertex on the neighboring processor. Such information includes the processor ID of the owning
processor, location of the ghost node in that processor’s data structure, as well as marking and
trimming status of the ghost node.

We should note that conceptually the forward and backward trims are separated as in Fig. 2
but they can be performed simultaneously. The implementation of ModifiedDCSC performs its
trimming in this manner, starting from both ends and working towards the middle of each DDG.

Parallelization of the ModifiedDCSC algorithm for distributed graphs in which SCCs may span
multiple processors raises a number of algorithmic and software challenges as discussed in the
following subsections.

3.1 Simultaneous work on multiple problem instances

The divide-and-conquer nature of ModifiedDCSC allows us to exploit additional parallelism on
multiple problem instances. There are basically two cases of this which we can make note of: (1)
multiple subgraphs from each recursion, and (2) many angles which are processed in a radiation
transport simulation.

First, each recursive call to ModifiedDCSC will divide every graph into subgraphs based on the
results from vertex marking. Since these graphs cannot share any SCCs (Lemma 1) they are treated
as independent problems. Each graph containing SCCs generates up to three recursive subproblems

5

as indicated in steps (9)–(11) of Fig. 2. In our parallel implementation all subproblems for all the
different graphs are placed into the list of graphs for subsequent recursion.

Second, recall that in the radiation transport application, for which our code was developed, we
need to search for SCCs in a set of directed graphs corresponding to different ordinates. In serial,
there is no reason not to work on each graph in succession. But in parallel, solving each graph
in succession is not the best method because it would add unnecessary overhead from termination
detection, etc. Also, each of these graphs will partition differently due to randomization in pivot
selection as well as differences in graph structures, so as recursion continues we gain parallelism by
having a better overall distribution of work across processors. Searching all graphs simultaneously
also reduces idle time.

In parallel, the trim and mark steps for a particular ordinate will generally enable simultaneous
activity by only a subset of processors. By working on all the graphs simultaneously, we can keep
more processors busy and so get improved overall performance. Our implementation continues to
follow the approach sketched in Fig. 2, but now multiple graphs are being worked on at the same
time. All the graphs are subjected to trimming simultaneously. Then all the searches for ancestors
and descendants are performed concurrently. This complicates the code since interprocessor mes-
sages and elements in the task queue must include an indication of which graph they are associated
with.

One complication of doing this is that at a given level of recursion, there can be many subgraphs
in the system from each angle being treated as independent graphs. We label every graph with the
two graph id tags. Ths first tag is used to identify the graph in its original context. The second
tag is unique for every subgraph produced via recursive partitioning.

3.2 Termination detection

ModifiedDCSC is designed to run on distributed memory computers and we do not know before-
hand how many vertices TRIM or MARK will visit. This complicates the trim and mark operations
in several ways. First, we don’t maintain a global task queue, but rather a local queue on each
processor. A vertex that needs to be added to the work queue (or have its ancestor count decre-
mented) may reside on another processor. We handle this by sending a message to the relevant
processor who then marks the vertex and adds it its own local queue. This precisely mimics the
parallelization of transport sweeps described by Plimpton, et al. [11]. The more subtle challenge is
determining when a trim or mark step is completed. Just because a processor has an empty task
queue doesn’t mean it has no work left to do. It may yet receive a message from another processor
telling it to add tasks to its queue or to decrement an ancestor count. The trim or mark operation
isn’t complete until all processors have empty task queues, and all messages have been received.
We cannot know a-priori how many nodes will be visited during trimming or marking due to the
effects of the SCCs. Because of this, we must determine when there is no more work left using a
termination detection algorithm.

In our first implementation we used a token ring method, but this method is not scalable and
has since been replaced. The current implementation of ModifiedDCSC uses a binary tree topology
similar to the approach of Baker et. al, et al. [12] and requires only O(log P) time where P is the
number of processors.

This binary tree implementation sets up each processor as a node in a binary tree topology.
Termination only occurs when totalsends− totalreceives = 0 and no new work has been performed
since the last check. First messages proceed up the tree, sending the ongoing count of sends and
receives as well as a count of the total work for each subtree.

6

(a) (b)

Figure 5: Two grids used for testing the strongly connected component detection. (a) a rectangular mesh
where the corner point of each cell is displaced by a random amount. (b) a hollow cylinder with the grid
twisted along the vertical axis.

When the root node (processor 0) receives a message from both of its children, it compares the
counts against the termination condition and it checks that the work count is unchanged. If these
conditions are not met, the root node saves the work count and sends a DOWN message to each
of its children.

Upon receipt of a DOWN message, each node forwards it on to their children until the DOWN
messages reach the leaves. A leaf will change state from DOWN to UP and will send a message
to its parent when it has no more work to do locally. This process detects termination after two
passes through the tree. Since it is a binary tree, the scaling should be O(log P).

4 Experimental Results

We conducted a series of experiments to illustrate the performance characteristics of ModifiedDCSC
on two different parallel architectures. The first system used is the Intel TeraFLOPS (ASCI Red)
supercomputer at Sandia National Laboratories. It is a massively parallel distributed memory
computer consisting of 4640 nodes with 2 Intel Pentium Pro 333 MHz processors per node, or 9280
processors in total. Each processor has 32 KB L1 and a 512 KB L2 cache and 256 MB per node.
ASCI Red uses proprietary message passing hardware with 310 Mbytes/sec bandwidth and 15µsec
latency.

The second system we used for gathering experimental data is the CPlant cluster at Sandia
National Laboratories. The CPlant machine is a commodity cluster built with 500 MHz DEC-Alpha
processors. Each processor has 256 MB RAM and uses Myrinet interconnect (100 MBytes/sec,
60µsec latency).

The input graphs are generated from finite element meshes. These meshes are made up of
hexahedral cells defined by 8 corner nodes. Each cell represents a vertex in our graphs for SCC
searching. An edge is inserted between two vertices if their corresponding cells share a face.

We used two geometries for our experiments, which are illustrated in Fig. 5. The first mesh is
a rectangular grid which is deformed by randomly perturbing the location of the corner nodes of
each cell. The magnitude of the random displacement is bounded by a specified percentage of the
original inter-node distance. As the magnitude of corner displacement is increased we expect that
more SCCs will be produced, and should be evenly distributed throughout the graph.

7

1 10 100
Number of Processors

1

10

100

E
xe

cu
tio

n
T

im
e

(s
ec

)

Trim ON
Trim OFF

Effect of Trim on Execution Time
ASCI Red; Rectangular Mesh; 30% Deformation; 60 Angles

Figure 6: Effects of TRIM on execution time of ModifiedDCSC.

The second geometry is a cylindrical mesh consisting of concentric stacked rings which are then
twisted to produce SCCs. Note however that the SCCs will only be generated for ordinate directions
nearly parallel to the cylindrical axis. For both geometries, we maintained a scaling of 1000 vertices
per graph per processor throughout all experiments. For the warped rectangle, as we doubled the
number of processors we doubled the number of grid points in the x then y z direction, keeping
the aspect ratio at most 2. For the cylinder, we just halved the angular separation, doubling the
number of elements in each annulus.

These two geometries are very different in terms of the SCCs they produce and their effects
on the behavior of ModifiedDCSC. In the rectangular mesh, we found that the average SCC is
small, consisting of fewer than 10 vertices. For the twisted cylinder, an SCC typically consists of
thousands of vertices, usually all the vertices in a plane of the cylinder.

Both problems are scaled in terms of grid size, but the scaling properties of the number of
SCCs varies. Fo the cylinder the number of SCCs remains fixed, but the size of the SCCs grows
with problem size. For the rectangular problems under a fixed deformation, the size of each SCC
remains the same, but the number of them grows with problem size. These two problems were
selected to provide insight into how the performance of ModifiedDCSC is influenced by the input
graphs. For parallel execution, all the grids were partitioned using the multilevel KL algorithm in
the Chaco tool [13].

4.1 Graph Trimming

The purpose of this experiment is to show the impact of the TRIM addition to the original DCSC
algorithm. With the TRIM step turned off, we essentially have the DCSC algorithm. For this
experiment, we measured the execution time taken by DCSC and ModifiedDCSC to detect the
SCCs for the rectangular mesh at 30% deformation.

Figure 6 shows a comparison of execution time on a rectangular mesh with trimming enabled
and disabled. We can see that the addition of vertex trimming to the DCSC algorithm results in
nearly an order of magnitude reduction in execution time for this mesh type. This confirms that
trimming offers a significant performance improvement over the untrimmed version (DCSC) for
meshes with sparse SCCs.

8

0 10 20 30 40 50 60
Percent Deformation

0

2000

4000

6000

8000

N
um

be
r o

f S
C

C
s

60 Angles
220 Angles

Number of SCCs Found vs. Deformation of Rect. Mesh
CPlant, 16 Processors, 1000 vertices per processor per angle

(a)

0 10 20 30 40 50 60
Percent Deformation

0

1

2

3

4

5

6

7

E
xe

cu
tio

n
T

im
e

(s
ec

)

60 Angles
220 Angles

Execution Time vs. Deformation of Rect. Mesh
CPlant, 16 Processors, 1000 vertices per processor per angle

(b)

Figure 7: Effects of mesh deformation on SCC count (a), and execution time, (b).

4.2 SCC Count

In this experiment, we studied the effect of increasing the deformation in a rectangular mesh. The
number of processors was held constant at 16 for this experiment, varying only the magnitude of
corner-node displacement in our meshes as a percentage of the distance to the nearest node. As
illustrated in Fig. 7, the number of SCCs grows rapidly with the amount of deformation. The
rightmost graph in Fig. 7, shows that the execution time also grows with the number of SCCs,
albeit less dramatically than the growth in the number of SCCs. The reasons for this is that
ModifiedDCSC is dependent on the number of SCCs since only one SCC per graph is found and
removed per recursive iteration. Increasing the number of SCCs will naturally increase the number
of iterations required to find them all. There is a synchronization during each recursive step of our
implementation, so it follows that our execution times will increase with the number of iterations.

Because ModifiedDCSC partitions each graph into as many as 3 independent subgraphs with
each iteration, and DCSC can only detect one SCC per graph per iteration, the number of SCCs
that can be found grows exponentially with each additional iteration. Therefore, if the number
of SCCs grows exponentially, we should only observe a linear growth in execution time due to
additional overhead of each additional iteration.

There is another factor to consider in this example as well. Because this experiment holds the
graph size constant and increases the number of SCCs present, we can say that the density of SCCs
is increasing. By increasing the density of SCCs in G, we also reduce the effectiveness of trimming
G.

4.3 Scaled Graphs

In this experiment, we investigated the behavior of ModifiedDCSC on scaled size problems on both
CPlant and ASCI Red. For all tests, we set the graph size to 1000 vertices per processor. The
graphs in Figures 8 and 9 illustrate the execution times we will discuss in this section.

The first graph we look at is the twisted cylinder. In this test, we scale the problem size with
the number of processors, but the total number of SCCs remains constant. The two cylinders tested
with 0 and 10 degrees of twist produced 0 and 40 SCCs, respectively, for all tests. As we can see in
the graphs of their execution times in Fig. 8, the cylinder with zero cycles scaled very well to 1024
processors. For this problem, the code need only perform a single TRIM for each angle. When

9

1 2 4 8 16 32 64 128 256 512 1024
Number of Processors

1

10

100

1000

E
xe

cu
tio

n
T

im
e

(s
ec

)

Warped Ring 10 Deg. Twist
Warped Ring 0 Deg. Twist

Execution Time on ASCI Red for Scaled Meshes
440 Angles; 1000 Vertices Per Processor

1 2 4 8 16 32 64 128 256 512 1024
Number of Processors

1

10

100

1000

E
xe

cu
tio

n
T

im
e

(s
ec

)

Warped Ring 0 Deg. Twist
Warped Ring 10 Deg. Twist

Execution Time on CPlant for Scaled Meshes
440 Angles; 1000 Vertices Per Processor

Figure 8: Execution times for the twisted cylinder meshes on ASCI Red and CPlant. Vertices scaled with
processors 1000 vertices / processor. The number of SCCs is constant.

1 2 4 8 16 32 64 128 256 512 1024
Number of Processors

1

10

100

1000

E
xe

cu
tio

n
T

im
e

(s
ec

)

Rect. 0% Deformation
Rect. 30% Deformation
Rect. 40% Deformation

Execution Time on ASCI Red for Scaled Meshes
440 Angles; 1000 Vertices Per Processor

1 2 4 8 16 32 64 128 256 512 1024
Number of Processors

1

10

100

1000

E
xe

cu
tio

n
T

im
e

(s
ec

)

Rect. 0% Deformation
Rect. 30% Deformation
Rect. 40% Deformation

Execution Time on CPlant for Scaled Meshes
440 Angles; 1000 Vertices Per Processor

Figure 9: Execution times for the rectangular grids measured on ASCI Red and CPlant. Vertices scaled
with 1000 vertices / processor. The density of SCCs is constant for a given % deformation.

we add some cycles, the execution time begins increasing noticeably around 64 processors. This is
due primarily to the increase in parallel overhead. The effects of synchronization and termination
detection, though minimized, are magnified by the cumulative latency of so many processors, and
ModifiedDCSC is a communication-intensive application.

The second graph we performed scaled testing on is the rectangular grid mesh. We applied
scalability testing to three different rectangular meshes; one with 0% deformation (no SCCs), one
with 30% deformation (moderate SCC), and one with 40% deformation (more SCCs). Figure 9
shows the execution times for ModifiedDCSC to solve these graphs measured on ASCI Red and
CPlant. First note that unlike the twisted cylinder timings, even the zero cycle instance shows
significant runtime growth with the number of processors. For the cylinder, the different ordinates
enter the geometry in different places, and so many processors can begin working immediately.
For the rectangular grid, all the angles enter at one of the eight corners, and so as the number of
processors grows the percentage of initially idle processors grows as well.

Second, we see that it takes much more time to find all of the SCCs for these graphs than it
did for the graphs based on cylindrical meshes. This is not unexpected because the SCC density
is constant for a particular graph, therefore the number of SCCs also scales with problem size. So
some growth in runtime is expected from the observations in §4.2. However, the runtime here is

10

also effected by the parallel overhead. The combination of these two factors, along with the initial
latency associated with a fixed number of initially active processors, leads to the fairly substantial
runtime growth on large numbers of processors.

However it is worth noting that the radiation transport calculations that motivated our work
will require many hundreds or thousands of seconds for large computations on many processors. So
even this worst-case performance results in runtimes that are dominated by the physical simulation
(see, for example, [14]).

5 Conclusions

We described the implementation of a new parallel algorithm, ModifiedDCSC, that finds strongly
connected components in direct graphs on distributed memory computers. The traditional, serial,
algorithm for finding the strongly connected components in a graph, G(V,E), is based on depth
first search and has O(|E| + |V |) complexity. Depth first search is difficult to parallelize, causing
the need an algorithm with more available parallelism.

Special consideration was taken during development for our specific application in sweep calcu-
lations for radiation transport, though this algorithm is not limited to these graphs only.

The performance of ModifiedDCSC is greatly effected by the geometry and the number of SCCs
in input graphs. Since this algorithm is dominated by communication, scalability can be limited
depending on the nature of the graph that is being searched. We have shown the results from
experiments on thousands of processors with reasonable scalability.

For radiation transport applications, the number of SCCs generated on any given time step is
expected to be low. While in principle many SCCs can be generated cumulatively over many time
steps, in practice remeshing is employed to improve the mesh geometry before the SCC count gets
very large. The execution time for ModifiedDCSC has been shown to be much less than that of
the numerical computation it precedes [14]

Consequently, we consider our work to be the first practical parallel implementation of an
algorithm to detect strongly connected components for general graphs.

6 Acknowledgements

This work was performed at Sandia National Laboratories, a multiprogram laboratory operated
by Sandia Corporation, a Lockheed-Martin Company, for the U.S. DOE under contract number
DE-AC-94AL85000. The work has been sponsored by DOE’s ASCI program.

References

[1] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160,
June 1972.

[2] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In
Handbook of Theoretical Computer Science, Algorithms and Complexity, pages 869–941. Jan
van Leeuwen, ed., Elsevier Science Publishers B. V., 1990.

[3] J. H. Reif. Depth-first search is inherently sequential. Information Processing Letters,
20(5):229–234, 1985.

11

[4] H. Gazit and G. L. Miller. An improved parallel algorithm that computes the BFS numbering
of a directed graph. Information Processing Letters, 28(2):61–65, 1988.

[5] R. Cole and U. Vishkin. Faster optimal parallel prefix sums and list ranking. Information and
Computation, 81:334–352, 1989.

[6] N. Amato. Improved processor bounds for parallel algorithms for weighted directed graphs.
Information Processing Letters, 45(3):147–152, 1993.

[7] M. Y. Kao and G. E. Shannon. Linear-processor NC algorithms for planar directed graphs
II: Directed spanning trees. Technical Report DUKE–TR–1990–02, Duke University, Durham,
NC, 1990.

[8] D. Bader. A practical parallel algorithm for cycle detection in partitioned digraphs. Technical
Report AHPCC-TR-99-013, University of New Mexico, Albuquerque, NM, 1999.

[9] L. Fleischer, B. A. Hendrickson, and A. Pinar. On Identifying Strongly Connected Components
in Parallel in solving irregularly structured problems in parallel. volume 1800 of Lecture Notes
in Computer Science, pages 505–512. Springer-Verlag, 2000.

[10] Michael J. Quinn and Narsingh Deo. Parallel graph algorithms. ACM Computing Surveys
(CSUR), 16(3):319–348, 1984.

[11] S. J. Plimpton, B. A. Hendrickson, S. P. Burns, and W. C. McLendon III. Parallel algorithms
for radiation transport on unstructured grids. In Proc. of SuperComputing 2000 (SC2000),
Dallas, TX, November 2000.

[12] A. H. Baker, S. Crivelli, and E. R. Jessup. An efficient parallel termination detection algorithm.
Technical Report CU-CS-915-01, University of Colorado, 2001.

[13] B. Hendrickson and R. Leland. The Chaco user’s guide, version 2.0. Technical Report SAND94–
2692, Sandia National Laboratories, Albuquerque, NM, October 1994.

[14] S. J. Plimpton, B. A. Hendrickson, S. P. Burns, W. C. McLendon III, and L. Rauchwerger.
Parallel algorithms for Sn transport on unstructured grids. submitted to Nuclear Science and
Engineering, 2002.

12

